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Abstract 

 

This study examines the relationship between sample size and item parameter estimation 

precision when utilizing the one-parameter model. Item parameter estimates are examined 

relative to “true” values by evaluating the decline in root mean squared deviation (RMSD) and 

the number of outliers as sample size increases. This occurs across three conditions. The first 

condition utilizes one test level of 40 items without missing data. The second incorporates 

missing data and the third utilizes a vertical scale across three levels. When test levels were 

calibrated individually, the majority of RMSD and outlier-reduction improvement was achieved 

once a sample size of 400 examinees had been reached. Incremental increases to sample size 

beyond a threshold of 500 examinees added little gain to estimation precision.  

With the vertical-scaling condition, the majority of RMSD and outlier-reduction 

improvement was seemingly reached with a sample size of approximately 300 examinees per 

level with 500-600 examinees per common item linking set. However, when compared to 

conditions one and two, a similar level of estimation precision was not reached until a sample 

size of approximately 400-450 examinees per each of the three levels. 

 

 

 

 

 

 

 

 



 

Background 

 

There exists a positive relationship between incremental increases in sample size and 

estimation precision when utilizing Item Response Theory (IRT) models to estimate item 

parameters. An inadequate sample size can lead to increased estimation error with negative 

implications for the analysis of item and test data including IRT based test construction 

(Hambleton, Jones & Rogers, 1993; Swaminathan et al, 2003; He & Wheadon, 2012). Sample 

size considerations are especially important with activities typically associated with high stakes 

assessments. Development of a scale score reporting metric, the use of  IRT-based ability 

estimates to derive cut scores, IRT true  score equating and item calibrations associated with 

“item banking” for a computer adaptive test (CAT) are examples of activities where estimation 

precision is critical and larger sample sizes are generally recommended. (Reeve & Fayers, 2005) 

From a theoretical perspective, IRT models of greater complexity require larger sample 

sizes to achieve a similar level of estimation precision than do less complex models. In this 

manner, multi-dimensional IRT models generally require a greater sample size than do 

unidimensional models. Likewise, IRT models with more parameters require a greater sample 

size than do models with fewer parameters.  Research and practice has generally shown that 

smaller sample sizes are required with the Rasch Model, a one-parameter model, than is the case 

with the two-parameter or three-parameter models (Edelen & Reeve, 2007).  

Though theoretical underpinnings exist, there has been little empirical research focused 

on the relationship between sample size and estimation precision. Reise and Yu (1990) in a study 

using MULTILOG and the graded response model (a generalization of the two-parameter model) 

to estimate item and ability parameters recommended a sample size of at least 500 examinees to 



achieve an adequate level of estimation precision. They also recommended that as many as 1000 

to 2000 examinees may be required for each level or form when a linking design is utilized to 

calibrate multiple levels or forms to the same underlying scale. 

Sample size and estimation precision has also been linked through the standard error of 

estimate. Embretson and Reise (2000) recommended that, with regard to sample size, researchers 

should focus on the size of the standard error of item parameter estimates to ensure that these are 

reasonable. Further, Wasserman and Bracken (2003) noted that the standard error of item 

parameter estimates becomes smaller as sample size increases up to a point after which 

diminishing returns are expected. It is this notion of diminishing returns that will be the central 

focus for the remainder of this paper. 

 

Method 

The focus of this study is an examination of the recovery of estimated IRT item 

parameters relative to their “true” values by evaluating the decline in root mean squared 

deviation (RMSD) and the number of outliers as sample size increases. This evaluation occurs 

across three conditions. For the first condition, WINGEN2 (Han, 2007) was used to simulate set 

of 40 dichotomously scored items with no missing data and an overall item difficulty mean of 

0.00 with a standard deviation (SD) of 1.00. This condition utilized a set of 3,000 examinees 

simulated to have an ability mean of 0.00 with an SD of 1.00. “True” item parameter values were 

derived by calibrating the 40 items with the full set of 3000 examinees. In order to derive item 

parameter measures across 10 levels of sample size (10 levels ranging from 100 to 1000 

examinees in increments of 100), random samples of 100 thru 1000 cases were drawn from the 

simulated set of 3000 examinees. Ten replications were executed for each of the 10 levels of 



sample size. This process created 100 data sets (10 levels of sample size x 10 replications) to be 

used for the item calibrations. WINSTEPS 3.65 (Linacre, 1991-2002) was used to calibrate each 

data set with the Rasch Model. Item parameter estimates were evaluated relative to their “true” 

base calibration values. For each level of sample size the average RMSD was computed as well 

as the average number of outlier items (defined as the number of item difficulty measures that 

differ from “true” by .20 or more) across the 10 runs. The selection of the threshold value of .20 

reflects the notion that item difficulty measures that differ from their base calibration measure by 

less than .20 or .30 have no practical impact on person measurement (Wright, 1977). Also, a 

threshold of .20 is more than 4 times the average of the base calibration item standard errors of 

estimate which was equal to .043.  

As with condition one, the second condition utilized a simulated set of 40 dichotomously 

scored items simulated to have an overall item difficulty mean of 0.00 with an SD of 1.00. 

Likewise, this condition utilized a set of 3,000 examinees simulated to have an ability mean of 

0.00 with an SD of 1.00.  However, with condition two missing data was applied to the simulated 

data set of 3000 examinees. For this condition, each item was omitted an average of 48 times 

(1.62% of all examinees) with 20% of the examinees not reaching the end of the test. Item 

responses were selected for omission randomly and were programmatically embedded according 

to the notion that omits could also be guessed at. Hence, item data that had originally been 

scored as 1 was selected for omission 25% of the time and item data that had been originally 

scored as 0 was selected for omission 75% of the time. Not-reached items were embedded by 

utilizing a random selection of examinees to sequentially embed not-reached item strings, which 

varied in length, between items 33 and 40 by programmatically assigning blanks to item 

response strings extending from a given item within the 33-40 range to the end of the test. “True” 



item parameter values were then derived by calibrating the 40 items with the full set of 3000 

examinees. Random sample draws for each of 10 levels of sample size were derived in a similar 

manner as was done with condition one. This process was replicated 10 times, for each of 10 

levels, resulting in 100 data sets. Each data set was then calibrated with WINSTEPS. The 

average RMSD, between estimated and “true” parameters, was computed as well as the average 

number of outliers (defined as the number of item difficulty measures that differ from “true” by 

.20 or more) across the ten runs for each level of sample size.  

The third condition utilized three levels of data with levels 1 and 3 containing 40 items 

and level 2 containing 50 items. The vertical scaling design is presented in Chart A.1 of the 

Appendix. The levels were vertically linked using common items with 10 items linking between 

level 1 and 2 and 10 items linking between levels 2 and 3. As a result this third ”vertical scaling” 

condition incorporated three test levels with 30 operational items and 10 common items for 

levels 1 and 3 and 20 common items for level 2 (10 in common with level 1 and 10 in common 

with level 3). All of the items were dichotomously scored. 

Under the vertical scaling design, items were concurrently calibrated across levels. Prior 

to this calibration, the level 1 items were initially simulated to have a target difficulty mean of  

-.20 and SD of .50. The level 2 items were simulated to have a mean of .00 and SD of .50 and the 

level 3 items were simulated to have a target difficulty mean of .20 and SD of .50.  Condition 

three utilized simulated data sets across each of the three levels with each level containing 3,000 

examinees. Level 1 examinees were initially simulated to have a target ability mean of -.20 and 

SD of .50. The level 2 examinees were simulated to have a mean of .00 and SD of .50 and the 

level 3 examinees were simulated to have a target ability mean of .20 and SD of .50.  Once the 

data had been simulated, p-values were computed for each of the linking items to ensure that the 



differences in linking item difficulty across levels demonstrated reasonable growth. A 

comparison of the linking item p-values is presented in Table A.2 of the Appendix.  

“True” item parameter values were derived through a concurrent calibration of the 110 

items with the full set of 9000 examinees (3 levels * 3000 examinees). The post-concurrent 

calibration “true” means and SDs are reported in the Table A.3 of the Appendix. In order to 

derive item parameter measures across 15 levels of sample size (15 levels ranging from 100 to 

1500 examinees in increments of 100), random samples of 100 thru 1500 cases were drawn from 

the simulated set of 9000 examinees. Ten replications were executed for each of the 15 levels of 

sample size. This process created 150 data sets (15 levels of sample size x 10 replications) to be 

used for the item calibrations. As was the case with conditions one and two, item parameter 

estimates were evaluated relative to their “true” base calibration values. For each level of sample 

size and across the 10 runs, the average RMSD was computed as well as the average number of 

outlier items.  

 

Results 

For each of the three conditions respectively, the mean RMSD across the 10 runs for each 

level of sample size is presented in Table 1. A decrease in RMSD is indicative of improved 

retrieval of the “true” item parameters. This improvement in “true” parameter recovery as sample 

size increases is presented in Figures 1-3. Likewise, the number of outlier items relative to their 

“true” parameter values is presented in Table 2 with improvement as sample size increases 

plotted in Figures 4-6. For all three conditions, the points where the curves flatten are suggestive 

of a threshold where gains in estimation precision from incremental increases in sample size 

appear to become consistent and small. 



With respect to condition one (one level with no-missing data), depicted in Figures 1 and 

4, as sample size increases the majority of RMSD and outlier-reduction improvement is reached 

by an n-count of 400 and the shape of the curves begin to flatten at an n-count of 500 (RMSD = 

0.087). This flattening effect is especially noticeable in Figure 4 which plots the number of 

outlier items. As shown in Table 2, at an n-count of 500 the number of outlier items is 2.75%.   

With condition two (one level with missing data), depicted in Figures 2 and 5, the 

majority of RMSD and outlier-reduction improvement is reached by an n-count of 400 and the 

shape of the curves begin to flatten at an n-count of between 500-600 examinees (RMSD ~= 

0.088). This flattening effect is especially noticeable in Figure 5 which plots the number of 

outlier items. As presented in Table 2, at an n-count of 500 the number of outlier items is at 

6.00% but falls to 3.00% at an n-count of 600. 

With respect to condition three (“vertical scale” across three levels) depicted in Figures 3 

and 6, this flattening seemingly occurs at an overall sample size of between 800-900 examinees 

(RMSD ~= 0.119). At this sample size there were 267-300 examinees per level with between 

534 and 600 examinees being administered the common items between each adjacent level. As 

shown in Table 2, at an n-count of between 800 and 900, the number of outlier items is roughly 

10%. It is important to note that with the vertical scaling condition, similar levels of estimation 

precision as encountered with conditions one and two were not reached until an overall sample 

size of between 1,200 and 1,400 examinees (roughly 400-450 per level with approximately 800 

or more examinees being administered the common items between each adjacent level) was 

reached.  

 

 



Discussion 

Calibration objectives are important when practitioners consider the issue of estimation 

precision and sample size. For example, a high degree of estimation precision is typically 

required for purposes such as scale construction or the calibration of items for an item bank. In 

contrast, less estimation precision is typically required for a pilot study item tryout.  

When test levels were calibrated individually, the majority of RMSD and outlier-

reduction improvement was achieved once a sample size of 400 examinees had been reached 

which, depending upon the practitioner’s calibration objectives, may be a reasonable starting 

point when considering the issue of appropriate sample size. Support can also be found for the 

Reise and Yu (1990) study which recommended a sample size of at least 500 examinees when 

utilizing the graded response model. Though this study utilizes the one-parameter model, the 

results suggest a similar sample size of 500 examinees as the point at which the gains from 

incremental increases in sample size become consistent and small. 

A concurrently calibrated vertical scaling across three levels was also studied. As might 

be expected an overall sample size of 500 (on average 167 examinees per each of three levels) 

was inadequate as far as estimation precision is concerned (21.73% of the items were outliers). 

An overall sample size of between 800-900 examinees, with approximately 300 examinees per 

level and between 500 and 600 examinees administered common items between each adjacent 

level, seemed to be the point by which a majority of the RMSD and outlier-reduction 

improvement had been reached. In this case, 10% of the items differed from their “true” 

difficulty measure by .20 or more. This level of sample size (roughly 300 examinees per level 

and between 500 and 600 examinees administered common items between each adjacent level) 

might be thought of as a reasonable starting point when thinking about vertical scaling. However, 



it may not provide an adequate level of estimation precision for all vertical scaling objectives. 

This is evident when one considers that similar levels of estimation precision as were reached 

with conditions one and two were not reached with the vertical scaling condition until an overall 

sample size of between 1200-1400 examinees (approximately 400-450 examinees per level with 

800 or more examinees being administered the adjacent level common items). 

Practitioners are accustomed to the trade-off that exists between the costs of obtaining a 

sample and estimation precision. When test levels were calibrated individually, the majority of 

RMSD and outlier-reduction improvement was achieved once a sample size of 400 examinees 

had been reached. Incremental increases to sample size beyond a threshold of 500 examinees 

added little to estimation precision. This threshold was slightly larger in the presence of missing 

data.  

With the vertical scaling condition, the concurrent calibration of just three test levels 

limits the generalizability of the results. However, the study of diminishing returns as utilized in 

this paper can be employed to help define the sample size required to obtain desired levels of 

estimation precision for a prospective scaling across just one level or across multiple levels. 

Given a known number of tests and levels to be scaled, practitioners might be encouraged to first 

simulate data and vary the level of sample size to evaluate estimation precision across the scale 

as part of the vertical scaling design process. This evaluation would aid practitioner’s in their 

selection of an appropriate sample size.  

 

 

 

 



Limitations 

The results from this study should be viewed in light of the fairly strict restrictions 

imposed by the study design that directly affect the generalizability of the results. First, this 

study utilized the Rasch Model as implemented by WINSTEPS.  If instead, the two parameter or 

three parameter logistic models were used, it seems likely that the sample size needed for 

satisfactory estimation precision would be greater simply on account of the additional parameters 

being estimated. 

Second, the number of items does not vary for conditions one and two. In both cases 40 

items were scaled. Future research might utilize item sets with fewer items to evaluate the impact 

on RMSD and the number of outlier items.  

Third, the vertical scaling portion of this study incorporated a concurrent vertical scaling 

utilizing only three test levels. It seems plausible that if concurrently scaling across four or more 

levels, that larger sample sizes at each level would be necessary in order to achieve similar levels 

of estimation precision. 

Each of the above limitations restrict the generalizability of these results. However, 

despite these limitations, this study incorporates a practical methodology that provides useful 

guidelines for the study of the relationship between sample size and estimation precision.  
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Table 1. RMSD and Change As Sample Size Increases 

 Complete-No Missing Data   

(One Level 40 Items) 

Missing Data–20% Not Reached 

(One Level 40 Items) 

Vertical Scale Across 3 Levels 

Sample Size Item  

RMSD 

Diff from 

Prev. Level 

Item  

RMSD 

Diff from Prev. 

Level 

Item  

RMSD 

Diff from  

Prev. Level 

100 0.222  0.232  0.388  

200 0.164 -0.058 0.167 -0.065 0.275 -0.063 

300 0.124 -0.040 0.127 -0.040 0.210 -0.065 

400 0.097 -0.027 0.105 -0.022 0.185 -0.025 

500 0.087 -0.010 0.102 -0.003 0.160 -0.025 

600 0.084 -0.003 0.088 -0.014 0.147 -0.013 

700 0.079 -0.005 0.081 -0.007 0.135 -0.012 

800 0.071 -0.008 0.074 -0.007 0.120 -0.015 

900 0.066 -0.005 0.067 -0.007 0.119 -0.001 

1000 0.060 -0.006 0.064 -0.003 0.111 -0.008 

1100     0.102 -0.009 

1200     0.094 -0.008 

1300     0.092 -0.002 

1400     0.088 -0.004 

1500     0.085 -0.003 

 

Figure 1 
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Figure 2 

 

 

Figure 3 
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Table 2. The Number of Items with Item Difficulty Measures that Differ From “True Parameter 

Value” By .20 or More As Sample Size Increases 

 Complete-No Missing Data   

(One Level 40 Items) 

Missing Data–20% Not Reached 

(One Level 40 Items) 

Vertical Scale Across 3 Levels 

Sample Size # of Items 

Diff  > .20 

Percent 

n / 40 

# of Items  

Diff  > .20 

Percent 

n / 40 

# of Items 

Diff  > .20 

Percent 

n / 110 

100 16.00 40.00% 15.90 39.75% 66.60 60.55% 

200 10.40 26.00% 9.30 23.25% 52.00 47.27% 

300 4.30 10.75% 5.40 13.50% 38.20 34.73% 

400 2.00 5.00% 2.30 5.75% 32.20 29.27% 

500 1.10 2.75% 2.40 6.00% 23.90 21.73% 

600 0.90 2.25% 1.20 3.00% 19.00 17.27% 

700 0.70 1.75% 1.00 2.50% 16.60 15.09% 

800 0.40 1.00% 0.80 2.00% 11.30 10.27% 

900 0.50 1.25% 0.20 0.50% 11.20 10.18% 

1000 0.40 1.00% 0.00 0.00% 9.20 8.36% 

1100     6.20 5.64% 

1200     4.80 4.36% 

1300     3.30 3.00% 

1400     3.50 3.18% 

1500     1.90 1.73% 

Figure 4 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

100 200 300 400 500 600 700 800 900 1000

# of Items  w/ 
 Diff >= .20 

Sample Size 

Complete Data-No Missing (One Level 40 Items): Number of  Items That 
Differ From True by .20 or More As Sample Size Increases 



Figure 5 

 

 

Figure 6 
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Appendix    

 

A.1) Vertical Scaling Design for Condition Three 

                Level 1       
30 Operational 10 Common      

       Level 2     
 10 Common 30 Operational 10 Common    

    Level 3   
   10 Common 30 Operational   

 

 

A.2) Vertical Scaling: Linking Item p-Values Across Levels 

Linking Item p-Values                     

  Linking Items  - Level 1 Item Position/Level 2 Item Position 

 

  

  31/1 32/2 33/3 34/4 35/5 36/6 37/7 38/8 39/9 40/10 Mean 

Level 1: p-Values 0.44 0.40 0.38 0.39 0.37 0.42 0.41 0.38 0.39 0.38 0.40 

Level 2: p-Values 0.74 0.71 0.70 0.69 0.67 0.67 0.65 0.63 0.61 0.59 0.67 

  

          

  

  Linking Items  - Level 2 Item Position/Level 3 Item Position     

  41/1 42/2 43/3 44/4 45/5 46/6 47/7 48/8 49/9 50/10 Mean 

Level 2: p-Values 0.43 0.42 0.41 0.40 0.41 0.40 0.40 0.39 0.39 0.37 0.40 

Level 3: p-Values 0.71 0.68 0.68 0.65 0.66 0.64 0.63 0.62 0.62 0.59 0.65 

 

 

A.3) Vertical Scaling: Concurrent Calibration Descriptive Statistics for “True” Items and Abilities 

Vertical 

Scale 

 

Item 

 

Abilities 

Level Mean SD Mean SD 

1 -1.211 .445 -1.17 .644 

2 -.028 .442 .028 .589 

3 1.183 .565 1.309 .628 

Overall 0.000 1.122 0.056 1.188 

 


